|
In mathematics, the Stieltjes transformation ''S''ρ(''z'') of a measure of density ρ on a real interval ''I'' is the function of the complex variable ''z'' defined outside ''I'' by the formula : Under certain conditions we can reconstitute the density function ρ starting from its Stieltjes transformation thanks to the inverse formula of Stieltjes-Perron. For example, if the density ρ is continuous throughout ''I'', one will have inside this interval : ==Connections with moments of measures== (詳細はmoments of any order defined for each integer by the equality : then the Stieltjes transformation of ρ admits for each integer ''n'' the asymptotic expansion in the neighbourhood of infinity given by : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Stieltjes transformation」の詳細全文を読む スポンサード リンク
|